

Assessing Water Use in Shale Gas Recovery

Dr. Chad Staddon

Bristol Group for Water Research, Department of Geography & Environmental Management

Funded by

Led by

In partnership with

Assessing Water Impacts of Unconventional Gas Exploitation

A Holistic "life-cycle" perspective requires us to consider:

- 1. Water use in survey and exploration (including test drilling)
- Water use in full-scale exploitation (including processing and distribution)
- 3. Water use in post-exploitation site remediation

And also:

- 4. Water use in capital equipment manufacture, transport and final energy generation (e.g. gas fired electricity)
- 5. need to recognise distinction between permanently consumptive uses (injectates) and non-permanent uses

Assessing Water Impacts of Unconventional Gas Exploitation

Water Security:

"Availability of an acceptable quantity & quality of water for health, livelihoods, ecosystems and production, coupled with acceptable level of water-related risks to people, environments and economies." Grey and Sadoff (Water Policy, 2007)

"Nexus" thinking requires us to consider not just water/gas trade-offs, but also displaced/dislocated uses such as:

- Local food production
- Other forms of energy production (e.g. "run of river" hydroelectric installations)
- Needs of the natural environment

Areas of Shale Gas Interest in the UK:

- Merseyside-Blackpool
- NE England
- · South Wales,
- Somerset,
- Hampshire & Sussex

Areas of (Relative) Water Scarcity

- Merseyside-Blackpool
- NE England (parts of)
- Hampshire & Sussex

Security Network

Resource availability % of the time

Creation date 14 May 2010

Centre for Ecology and Hydrology, © CEH.

In fact, the situation is more complex due to fine *geographical variations* and (often unpredictable) *temporal variations* in water availability.

Resource availability % of the time

Creation date 14 May 2010

Some features of this map are based on digital spatial data licensed from the Centre for Ecology and Hydrology, © CEH.

Therefore, there is a prima facie case for including the finer geographical and temporal water availabilities in any adjudication of any application for UG exploitation.....

....or we risk trading a positive increment of hydrocarbons energy security for a negative increment of water, food, and possibly (depending on local energy mix, etc.) alternative energy *in*security!

So, the scientific and regulatory challenge is to judiciously grant abstraction and discharge licences with due accord to:

- Energy-water trade-offs (kJ/m³ or litres/MMBTU)
- Energy-energy trade-offs (kJ/alternative kJ foregone)
- Energy-food trade-offs (kJ/displaced kCal foregone)
- Energy-economic output trade-offs (kJ/alternative £ foregone)

Also with due recognition of geographical and temporal variation in water availability

Approximately 24 megalitres per shale gas well, at least 80% of which is permanently lost, up to 20% returned to the surface as a "flowback" wastewater, most of which is not re-used but treated and discharged back into natural environment

But how significant is the volume of water used in fracking operations?

We need a measure of water efficiency/intensity in UG production

....and which properly understands the difference between "withdrawal" and "consumption"

Total litres/MMBTU

International Water Security Network

Permanent Consumption Litres/MMBTU

Energy production per unit water consumption in the Marcellus Shale Gas Play, Pennsylvania, USA

Water use in the US (2005)

Units: MGal/Day

Source: DOE / Lawrence Livermore National Labs, 2011 (Data from USGS Circular 1344, 2009).

Water Quality Impacts: Fracking Fluid Contents

- 90% water
- 9% sands
- 1% constituents such as
 - Sodium chloride
 - Ethylene glycol
 - Borate salts
 - Sodium/potassium carbonate
 - Guar gum
 - Isopropanol
 - Polyacrylamide
 - hydrochloric/acetic acids
 - Plus whatever is picked up en route: heavy metals, radionuclides, etc.

Water Quality: can water from fracking pollute other "natural" waters?

Standard Industry answer is "no, fracking layers are too deep", but:

- 1. Robert Jackson at Duke University, USA has positively linked fracked layers to groundwater layers in Pennsylvania using GCMS
- 2. The precautionary principle should incline national regulatory authorities to:
 - a) Insist on "security in depth" for fracking operations
 - b) Make research on hydrogeology a priority in assessing whether fracking is appropriate in any state/region
 - c) Pay more attention to management of flow-back waters (in the USA some flow-back is applied to agriculture!)

Wastewater is either "flow-back" from the fracking process or highly concentrated subterranean saltwater

Increasing amounts of wastewater transported to treatment facilities rather than re-injected or left as tailings

Possible regulatory tools:

- Water Framework Directive (2000)
- Groundwater Directive (2006)
- Waste Directive (2011)
- Mining Waste Directive (2006)
- Hydrocarbon Directive (1994)

Some issues with trade secrecy in exact formulation of fracking fluids, especially in the US – does the Aarhus Convention apply here?

Thank-you! Questions?

Acknowledgement

This project is funded by <u>Lloyd's Register Foundation</u>, a charitable foundation helping to protect life and property by supporting engineering-related education, publication and the application of research.

For further information see www.lrfoundation.org.uk

Funded by

Led by

In partnership with

